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Clustering is one of the fundamental experimental procedures in the analysis of scientific data.
Despite more than half a century of research, existing -clustering algorithms have limited
effectiveness because of the less informative in high-dimensional spaces of interpoint distances.
Embedding the data into a lower-dimensional may corrupt features space, which leads to
non-representative meaningless features and this hurts clustering performance. In this paper, the
attention deep continuous clustering (ADCC) is proposed to preserve data structures and significant
features. The deep autoencoder with attention mechanism used to embed the data into a
lower-dimensional space and optimized as a part of the clustering process. By integrating the
continuous clustering and autoencoder’s reconstruction loss, ADCC can jointly optimize cluster
labels assignment and learn features at the same time. The proposed model is optimized via
stochastic gradient descent and backpropagation. Also, the proposed approach does not rely on
prior knowledge of the number of ground truth -clusters. Therefore, we avoid discrete
reconfigurations of the objective that characterize prior clustering algorithms. The experimental
results on texting document datasets demonstrated the importance of attention autoencoder in data
structure preservation and the effectiveness of our algorithm.
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1. Introduction

Clustering is a vital research topic in data analysis
and machine learning. Well-known approaches include
center-based methods and their generalizations [1], [2],
and spectral methods [3], [4] group data on handcrafted
features according to intrinsic characteristics or
similarity. However, when the dimension of input data
space is very high, the clustering becomes ineffective
due to unreliable similarity metrics [5], [6], [7].

Transforming data from high dimensional feature
space to lower—-dimensional space in which to perform
clustering is an intuitive solution and remains an open
problem. This can be done by applying dimension
reduction techniques like Principal Component Analysis
(PCA), but the representation ability of these shallow
models is limited. Thanks to the development of deep
learning, such feature transformation can be achieved
by using Deep Neural Networks (DNN). We consider

this kind of clustering as deep clustering.

Clustering, High Dimensional Clustering, Attention

Deep clustering is most recently proposed and leaves
a lot of unsolved problems. The primitive work in deep
clustering focuses on learning features that preserve
some properties of data by adding prior knowledge to
the subjective [8], [9]. There works combined
two-stage: feature transformation and then clustering.
Eventually, the goal is to perform nonlinear embedding
and clustering jointly. Later, algorithms that jointly
accomplish feature transformation and clustering come
into being [10], [11]. The Deep Embedded Clustering
(DEC) [11] algorithm defines an effective objective in a
self-learning manner. This clustering loss is used to
update parameters of transforming network and cluster
centers simultaneously. The cluster assignment is
implicitly integrated into soft labels.

However, the data structure preservation cannot be
guaranteed. Thus, the feature transformation may be
misguided, leading to the corruption of embedded space.
Besides, these algorithms require setting the number of
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clusters a priori. And the optimization procedures they
employ involve discrete reconfigurations of the
objective, such as discrete reassignments of data points
to centroids or merging of putative clusters in an
agglomerative procedure. Thus, it is challenging to
integrate them with an optimization procedure that
modifies the embedding of the data itself.

To deal with this problem, inspired by [12], we use
autoencoder with attention to learn embedded features
and to preserve the local structure of data generating
distribution. We propose to incorporate autoencoder into
deep continuous clustering (DCC) [13] framework, a
recent formulation of clustering as this way, the
proposed framework can jointly perform clustering and
learn representative features with feature structure
preservation. We refer to our algorithm as attention
deep continuous clustering (ADCC). The optimization of
ADCC can directly perform minibatch stochastic
gradient descent and backpropagation. The experimental
results validate our assumption and the effectiveness of
our ADCC.

2. Proposed Method

Consider a dataset X = [x1, ., xN] with N

samples is a set of points in R” that must be

clustered. When D is high, most clustering algorithms
do not operate effectively. To overcome this problem,
we embed the data into a lower-dimensional space R‘.
An autoencoder is a neural network that is trained to
attempt to copy its input to its output. Internally, it has
a hidden layer z that describes an embedded code used
to represent the input. The network consists of two

parts: an encoder function z=f,(z) and a decoder
r= ge(z) that produces a reconstruction. The

reconstructed representation r is required to be as
similar to x as possible. When the distance measure of

two variables is mean square error, given a set of data

iivl’ it tries to minimize the following

reconstruction loss:

samples {a:t}

N
m(é‘,%l'rec = min%z "xi — Ye (ftp(xi))“z (1)
i=1

The input with hundreds of dimensional represented
by several dimensional space will surely lead to
information loss, inadequate translation. To deal with
this problem, attention mechanism [14] is used to plug

a context vector into the gap between encoder and

decoder. By utilizing this, it is possible for the decoder
to capture global information rather than solely to infer
based on one hidden state. The attention weights,
context vector and attention vector are computed as

following formulas respectively:

exp (score(ht, ES))
Y3 exp (score(ht, ES,))

Cc = Z atsEs (3)

* 4)
ar = f(ce, he) = tanh (Wlce; hel)

(2)

Aps =

The Attention Deep Continuous Clustering (ADCC)

algorithm optimizes the following objective [13]:

1 1
L£(0,2) = SIX = Go(DIF + 5| Zi Paghzi—yillzmnn) +
Syl

reconstruction loss data loss (5)

7\Z(i,j)e e Wi p2(llz; — yillz; 1)

pairwise loss

where Y= F,(X). In (5), the mapping function £
and G, are performed by an autoencoder. The graph e
is constructed on X using the mutual kNN criterion[15],
augmented by the minimum spanning tree to ensure co
nnectivity to all datapoints. The role of M-estimators
p; and p, is to pull the representatives of a true under
-lying cluster into a single point, while disregarding sp
urious connections across clusters.

The parameters p; and u, control the radii of the c
onvex basins of the estimators. The weights w; ; are se
t to balance the contribution of each data point to the p
airwise loss. The parameter )\ set the balance between

the data loss and the pairwise loss. To balance the diff

_ ¥
lall,, where A =

erent terms, we set

Tapecwij (e — e)(e;— ¢)"and llzdenotes the spectral
norm.

Objective (5) can be optimized using scalable moder
n forms of stochastic gradient descent (SGD). The zi is
updated only via its corresponding loss and pairwise ter
ms. On the other hand, the autoencoder parameters Q
are updated via all data samples. Thus, in a single epoc
h, there is bound to be a difference between the update
rates for Z and Q. To deal with this imbalance, an ada
ptive solver such as Adam [16] is used.
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3. Experimental Results
3.1. Datasets.

We conduct experiments on RCV1 datasets [17]. Thi
s is a document dataset contains around 810,000 Reuter
s newswire articles. Following DCC [13], only the four
root categories: corporate/industrial, government/social,
markets and economics are considered, and all articles
with multiple labels are pruned. We report results on a
randomly sampled subset of 10,000 articles. TF-IDF fea
tures on the 2,000 most frequently occurring word stem
s are computed and normalized to the range [0, 1]. The
sampled dataset is referred as to RCV1-10K.

Note that ADCC is an unsupervised learning algorit
hm. Unlabeled data is embedded and clustered with no
supervision. There is thus no train/test split.

The distribution of RCV1-10K dataset is illustrated i
n Fig.l, the imbalance, defined as the ratio of the large
st and the smallest cardinalities of ground-truth cluster
s, are shown as 5.79. Fig.2 shows the visualization of t
he data points of RCV1-10K dataset by t-SNE [18].
3.2. Implementation

We report experimental results for FCN-DCC and A
DCC. For fully-connected autoencoders, we use the sam
e autoencoder architecture as DEC [19] with the followi
ng dimensions: D-500-500-2000-d-2000-500-500-D.

DCC uses three hyperparameters: the embedding di
mensionality d, the nearest neighbor parameter k for m
kNN graph construction, and the update period M for g
raduated nonconvexity. In this experiment, we config d
= 10, k = 10 (the setting used in [20]), M = 20 and the
cosine distance metric is used for graph construction.

For autoencoder initialization, a minibatch size of 256
and a dropout probability of 0.2 are set. During the opti
mization using the DCC objective, the Adam solver is u
sed with its default learning rate of 0.001 and momentu
m 0.99. Minibatches are constructed by sampling 128 ed
ges. ADCC was implemented using the PyTorch library.
3.3. Measures

Common measures of clustering accuracy include no
rmalized mutual information (NMI)[21] and clustering a
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Figure 1. The distribution of the RCV1—10K dataset.

Figure 2. The randomly sampled subset of 10K points
from the RCV1 dataset, visualized using the t-SNE.

ccuracy (ACC). However, NMI is known to be biased i
n favor of fine-grained partitions and ACC is also bias
ed on imbalanced datasets[22]. To overcome these biase
s, we use adjusted mutual information (AMI), defined a
S

MI(c, &) — E[MI(c, &)]

JH(OH(E) — E[MI(c,?)]

Here H() is the entropy, MI(,) is the mutual inform

AMI(c,&) =

(6)

ation. ¢ and c¢ are the two partitions being compared.
AMIlies in a range [0, 1]. Higher is better. For complet
eness, results according to ACC and NMI are also repo
rted.
3.4. Results

The results with two methods, fully-connected DCC
(FCN-DCC) and proposed ADCC are reported in Table.
1. The FCN-DC, which configured with the same para
meters get lower performance compared to ADCC.

Table 1. The experimental result on the RCV1-10K

dataset
Model AMI NMI ACC
FCN-DCC 0.495 0.498 0.563

ADCC (proposed

0.511 0.515 0.592
method)

4. Conclusion

This paper proposed Attention Deep Continuous Clus
tering (ADCC) algorithm, which jointly performs dimensi
onality reduction and clustering by optimizing a global ¢
ontinuous objective using scalable gradient-based solver
s. Dimensionality reduction remained the data structure
by incorporating an autoencoder with the attention mech
anism. The embedding was optimized as a part of the c
lustering process and the resulting network produces clu
stered data. The presented approach did not rely on a p
riori knowledge of the number of ground truth clusters.
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Empirical experiments demonstrated that structure prese
rvation is vital to a deep clustering algorithm and can f
avor clustering performance.

Our future work includes extending this method to i
mprove the accuracy of ADCC by improving the prepro
cessing stage and extract contextual word embedding o
f texting data before doing the dimensionality reduction.

In this paper, we proposed a confidence of adaptive
ranging technique guided by deep transfer learning
model for group-based cohesion prediction in the wild.
The main contribution of the paper lied in the use of
CAR to scale the cohesive score to various range and
multi-task learning from a single image. For future
work, we plan to explore other cues of the image for a

more robust cohesion prediction.
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